
TNT Documentation
Release

Torch Contributors

May 02, 2018

Notes

1 torchnet.dataset 3

2 torchnet.engine 9

3 torchnet.logger 11

4 torchnet.meter 15

5 torchnet.utils 19

Python Module Index 23

i

ii

TNT Documentation, Release

TNT is a library providing powerful dataloading, logging and visualization utlities for Python. It is closely intergrated
with PyTorch and is designed to enable rapid iteration with any model or training regimen.

Notes 1

http://pytorch.org

TNT Documentation, Release

2 Notes

CHAPTER 1

torchnet.dataset

Provides a Dataset interface, similar to vanilla PyTorch.

class torchnet.dataset.dataset.Dataset
Bases: object

batch(*args, **kwargs)

parallel(*args, **kwargs)

shuffle(*args, **kwargs)

split(*args, **kwargs)

transform(*args, **kwargs)

1.1 BatchDataset

class torchnet.dataset.BatchDataset(dataset, batchsize, perm=<function Batch-
Dataset.<lambda>>, merge=None, policy=’include-
last’, filter=<function BatchDataset.<lambda>>)

Bases: torchnet.dataset.dataset.Dataset

Dataset which batches the data from a given dataset.

Given a dataset, BatchDataset merges samples from this dataset to form a new sample which can be interpreted
as a batch of size batchsize.

The merge function controls how the batching is performed. By default the occurrences are supposed to be
tensors, and they aggregated along the first dimension.

It is often important to shuffle examples while performing the batch operation. perm(idx, size) is a function
which returns the shuffled index of the sample at position idx in the underlying dataset. For convenience, the
size of the underlying dataset is also passed to the function. By default, the function is the identity.

The underlying dataset size might or might not be always divisible by batchsize. The optional policy string
specify how to handle corner cases.

3

https://docs.python.org/3/library/functions.html#object

TNT Documentation, Release

Purpose: the concept of batch is problem dependent. In torchnet, it is up to the user to interpret a sample as a
batch or not. When one wants to assemble samples from an existing dataset into a batch, then BatchDataset is
suited for the job. Sometimes it is however more convenient to write a dataset from scratch providing “batched”
samples.

Parameters

• dataset (Dataset) – Dataset to be batched.

• batchsize (int) – Size of the batch.

• perm (function, optional) – Function used to shuffle the dataset before batching.
perm(idx, size) should return the shuffled index of idx th sample. By default, the function is
the identity.

• merge (function, optional) – Function to control batching behaviour. trans-
form.makebatch(merge) is used to make the batch. Default is None.

• policy (str, optional) – Policy to handle the corner cases when the underlying
dataset size is not divisible by batchsize. One of (include-last, skip-last, divisible-only).

– include-last makes sure all samples of the underlying dataset will be seen, batches
will be of size equal or inferior to batchsize.

– skip-last will skip last examples of the underlying dataset if its size is not properly di-
visible. Batches will be always of size equal to batchsize.

– divisible-only will raise an error if the underlying dataset has not a size divisible by
batchsize.

• filter (function, optional) – Function to filter the sample before batching. If
filter(sample) is True, then sample is included for batching. Otherwise, it is excluded. By
default, filter(sample) returns True for any sample.

1.2 ConcatDataset

class torchnet.dataset.ConcatDataset(datasets)
Bases: torchnet.dataset.dataset.Dataset

Dataset to concatenate multiple datasets.

Purpose: useful to assemble different existing datasets, possibly large-scale datasets as the concatenation oper-
ation is done in an on-the-fly manner.

Parameters datasets (iterable) – List of datasets to be concatenated

1.3 ListDataset

class torchnet.dataset.ListDataset(elem_list, load=<function ListDataset.<lambda>>,
path=None)

Bases: torchnet.dataset.dataset.Dataset

Dataset which loads data from a list using given function.

Considering a elem_list (can be an iterable or a string) i-th sample of a dataset will be returned by
load(elem_list[i]), where load() is a function provided by the user.

If path is provided, elem_list is assumed to be a list of strings, and each element elem_list[i] will prefixed by
path/ when fed to load().

4 Chapter 1. torchnet.dataset

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

TNT Documentation, Release

Purpose: many low or medium-scale datasets can be seen as a list of files (for example representing input
samples). For this list of file, a target can be often inferred in a simple manner.

Parameters

• elem_list (iterable/str) – List of arguments which will be passed to load function.
It can also be a path to file with each line containing the arguments to load

• load (function, optional) – Function which loads the data. i-th sample is returned
by load(elem_list[i]). By default load is identity i.e, lambda x: x

• path (str, optional) – Defaults to None. If a string is provided, elem_list is assumed
to be a list of strings, and each element elem_list[i] will prefixed by this string when fed to
load().

1.4 ResampleDataset

class torchnet.dataset.ResampleDataset(dataset, sampler=<function Resample-
Dataset.<lambda>>, size=None)

Bases: torchnet.dataset.dataset.Dataset

Dataset which resamples a given dataset.

Given a dataset, creates a new dataset which will (re-)sample from this underlying dataset using the provided
sampler(dataset, idx) function.

If size is provided, then the newly created dataset will have the specified size, which might be different than the
underlying dataset size. If size is not provided, then the new dataset will have the same size as the underlying
one.

Purpose: shuffling data, re-weighting samples, getting a subset of the data. Note that an important sub-class
ShuffleDataset is provided for convenience.

Parameters

• dataset (Dataset) – Dataset to be resampled.

• sampler (function, optional) – Function used for sampling. idx‘th sample is re-
turned by ‘dataset[sampler(dataset, idx)]. By default sampler(dataset, idx) is the identity,
simply returning idx. sampler(dataset, idx) must return an index in the range acceptable for
the underlying dataset.

• size (int, optional) – Desired size of the dataset after resampling. By default, the
new dataset will have the same size as the underlying one.

1.5 ShuffleDataset

class torchnet.dataset.ShuffleDataset(dataset, size=None, replacement=False)
Bases: torchnet.dataset.resampledataset.ResampleDataset

Dataset which shuffles a given dataset.

ShuffleDataset is a sub-class of ResampleDataset provided for convenience. It samples uniformly from the given
dataset with, or without replacement. The chosen partition can be redrawn by calling resample()

If replacement is true, then the specified size may be larger than the underlying dataset. If size is not provided,
then the new dataset size will be equal to the underlying dataset size.

Purpose: the easiest way to shuffle a dataset!

1.4. ResampleDataset 5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

TNT Documentation, Release

Parameters

• dataset (Dataset) – Dataset to be shuffled.

• size (int, optional) – Desired size of the shuffled dataset. If replacement is true,
then can be larger than the len(dataset). By default, the new dataset will have the same size
as dataset.

• replacement (bool, optional) – True if uniform sampling is to be done with re-
placement. False otherwise. Defaults to false.

Raises ValueError – If size is larger than the size of the underlying dataset and replacement is
False.

resample(seed=None)
Resample the dataset.

Parameters

• seed (int, optional) – Seed for resampling. By default no seed is

• used. –

1.6 SplitDataset

class torchnet.dataset.SplitDataset(dataset, partitions, initial_partition=None)
Bases: torchnet.dataset.dataset.Dataset

Dataset to partition a given dataset.

Partition a given dataset, according to the specified partitions. Use the method select() to select the current
partition in use.

The partitions is a dictionary where a key is a user-chosen string naming the partition, and value is a number
representing the weight (as a number between 0 and 1) or the size (in number of samples) of the corresponding
partition.

Partioning is achieved linearly (no shuffling). See ShuffleDataset if you want to shuffle the dataset before
partitioning.

Parameters

• dataset (Dataset) – Dataset to be split.

• partitions (dict) – Dictionary where key is a user-chosen string naming the partition,
and value is a number representing the weight (as a number between 0 and 1) or the size (in
number of samples) of the corresponding partition.

• initial_partition (str, optional) – Initial parition to be selected.

select(partition)
Select the parition.

Parameters partition (str) – Partition to be selected.

1.7 TensorDataset

class torchnet.dataset.TensorDataset(data)
Bases: torchnet.dataset.dataset.Dataset

6 Chapter 1. torchnet.dataset

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

TNT Documentation, Release

Dataset from a tensor or array or list or dict.

TensorDataset provides a way to create a dataset out of the data that is already loaded into memory. It accepts
data in the following forms:

tensor or numpy array idx‘th sample is ‘data[idx]

dict of tensors or numpy arrays idx‘th sample is ‘{k: v[idx] for k, v in data.items()}

list of tensors or numpy arrays idx‘th sample is ‘[v[idx] for v in data]

Purpose: Easy way to create a dataset out of standard data structures.

Parameters data (dict/list/tensor/ndarray) – Data for the dataset.

1.8 TransformDataset

class torchnet.dataset.TransformDataset(dataset, transforms)
Bases: torchnet.dataset.dataset.Dataset

Dataset which transforms a given dataset with a given function.

Given a function transform, and a dataset, TransformDataset applies the function in an on-the-fly manner when
querying a sample with __getitem__(idx) and therefore returning transform[dataset[idx]].

transform can also be a dict with functions as values. In this case, it is assumed that dataset[idx] is a dict which
has all the keys in transform. Then, transform[key] is applied to dataset[idx][key] for each key in transform

The size of the new dataset is equal to the size of the underlying dataset.

Purpose: when performing pre-processing operations, it is convenient to be able to perform on-the-fly transfor-
mations to a dataset.

Parameters

• dataset (Dataset) – Dataset which has to be transformed.

• transforms (function/dict) – Function or dict with function as values. These func-
tions will be applied to data.

1.8. TransformDataset 7

TNT Documentation, Release

8 Chapter 1. torchnet.dataset

CHAPTER 2

torchnet.engine

Engines are a utility to wrap a training loop. They provide several hooks which allow users to define their own
fucntions to run at specified points during the train/val loop.

Some people like engines, others do not. TNT is build modularly, so you can use the other modules with/without using
an engine.

2.1 torchnet.engine.Engine

class torchnet.engine.Engine
Bases: object

hook(name, state)
Registers a backward hook.

The hook will be called every time a gradient with respect to the Tensor is computed. The hook should
have the following signature:

hook (grad) -> Tensor or None

The hook should not modify its argument, but it can optionally return a new gradient which will be used
in place of grad. This function returns a handle with a method handle.remove() that removes the
hook from the module.

Example

>>> v = torch.tensor([0., 0., 0.], requires_grad=True)
>>> h = v.register_hook(lambda grad: grad * 2) # double the gradient
>>> v.backward(torch.tensor([1., 2., 3.]))
>>> v.grad
2
4

9

https://docs.python.org/3/library/functions.html#object

TNT Documentation, Release

6
[torch.FloatTensor of size (3,)]
>>> h.remove() # removes the hook

test(network, iterator)

train(network, iterator, maxepoch, optimizer)

10 Chapter 2. torchnet.engine

CHAPTER 3

torchnet.logger

Loggers provide a way to monitor your models. For example, the MeterLogger class provides easy meter visual-
izetion with Visdom , as well as the ability to print and save meters with the ResultsWriter class.

For visualization libraries, the current loggers support Visdom, although TensorboardX would also be simple to
implement.

3.1 MeterLogger

class torchnet.logger.MeterLogger(server=’localhost’, env=’main’, port=8097, title=’DNN’,
nclass=21, plotstylecombined=True)

Bases: object

A class to package and visualize meters.

Parameters

• server – The uri of the Visdom server

• env – Visdom environment to log to.

• port – Port of the visdom server.

• title – The title of the MeterLogger. This will be used as a prefix for all plots.

• nclass – If logging for classification problems, the number of classes.

• plotstylecombined – Whether to plot train/test curves in the same window.

peek_meter()
Returns a dict of all meters and their values.

print_meter(mode, iepoch, ibatch=1, totalbatch=1, meterlist=None)

reset_meter(iepoch, mode=’Train’)

update_loss(loss, meter=’loss’)

update_meter(output, target, meters={’accuracy’})

11

https://github.com/facebookresearch/visdom
https://docs.python.org/3/library/functions.html#object

TNT Documentation, Release

3.2 VisdomLogger

Logging to Visdom server

class torchnet.logger.visdomlogger.BaseVisdomLogger(fields=None, win=None,
env=None, opts={}, port=8097,
server=’localhost’)

Bases: torchnet.logger.logger.Logger

The base class for logging output to Visdom.

THIS CLASS IS ABSTRACT AND MUST BE SUBCLASSED

Note that the Visdom server is designed to also handle a server architecture, and therefore the Visdom server
must be running at all times. The server can be started with $ python -m visdom.server and you probably want
to run it from screen or tmux.

log(*args, **kwargs)

log_state(state)
Gathers the stats from self.trainer.stats and passes them into self.log, as a list

viz

class torchnet.logger.visdomlogger.VisdomLogger(plot_type, fields=None, win=None,
env=None, opts={}, port=8097,
server=’localhost’)

Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

A generic Visdom class that works with the majority of Visdom plot types.

log(*args, **kwargs)

class torchnet.logger.visdomlogger.VisdomPlotLogger(plot_type, fields=None,
win=None, env=None, opts={},
port=8097, server=’localhost’,
name=None)

Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

log(*args, **kwargs)

class torchnet.logger.visdomlogger.VisdomSaver(envs=None, port=8097,
server=’localhost’)

Bases: object

Serialize the state of the Visdom server to disk. Unless you have a fancy schedule, where different are saved
with different frequencies, you probably only need one of these.

save(*args, **kwargs)

class torchnet.logger.visdomlogger.VisdomTextLogger(fields=None, win=None,
env=None, opts={}, up-
date_type=’REPLACE’,
port=8097, server=’localhost’)

Bases: torchnet.logger.visdomlogger.BaseVisdomLogger

Creates a text window in visdom and logs output to it.

The output can be formatted with fancy HTML, and it new output can be set to ‘append’ or ‘replace’ mode.

Parameters

• fields – Currently not used

• update_type – One of {‘REPLACE’, ‘APPEND’}. Default ‘REPLACE’.

12 Chapter 3. torchnet.logger

https://docs.python.org/3/library/functions.html#object

TNT Documentation, Release

For examples, make sure that your visdom server is running.

Example

>>> notes_logger = VisdomTextLogger(update_type='APPEND')
>>> for i in range(10):
>>> notes_logger.log("Printing: {} of {}".format(i+1, 10))
results will be in Visdom environment (default: http://localhost:8097)

log(msg, *args, **kwargs)

valid_update_types = ['REPLACE', 'APPEND']

3.2. VisdomLogger 13

TNT Documentation, Release

14 Chapter 3. torchnet.logger

CHAPTER 4

torchnet.meter

Meters provide a way to keep track of important statistics in an online manner. TNT also provides convenient ways to
visualize and manage meters via the torchnet.logger.MeterLogger class.

class torchnet.meter.meter.Meter
Meters provide a way to keep track of important statistics in an online manner.

This class is abstract, but provides a standard interface for all meters to follow.

add(value)
Log a new value to the meter

Parameters value – Next restult to include.

reset()
Resets the meter to default settings.

value()
Get the value of the meter in the current state.

4.1 Classification Meters

4.1.1 APMeter

class torchnet.meter.APMeter
The APMeter measures the average precision per class.

The APMeter is designed to operate on NxK Tensors output and target, and optionally a Nx1 Tensor weight
where (1) the output contains model output scores for N examples and K classes that ought to be higher when
the model is more convinced that the example should be positively labeled, and smaller when the model believes
the example should be negatively labeled (for instance, the output of a sigmoid function); (2) the target contains
only values 0 (for negative examples) and 1 (for positive examples); and (3) the weight (> 0) represents weight
for each sample.

15

TNT Documentation, Release

add(output, target, weight=None)
Add a new observation

Parameters

• output (Tensor) – NxK tensor that for each of the N examples indicates the proba-
bility of the example belonging to each of the K classes, according to the model. The
probabilities should sum to one over all classes

• target (Tensor) – binary NxK tensort that encodes which of the K classes are asso-
ciated with the N-th input (eg: a row [0, 1, 0, 1] indicates that the example is associated
with classes 2 and 4)

• weight (optional, Tensor) – Nx1 tensor representing the weight for each example
(each weight > 0)

reset()
Resets the meter with empty member variables

value()
Returns the model’s average precision for each class

Returns 1xK tensor, with avg precision for each class k

Return type ap (FloatTensor)

4.1.2 mAPMeter

class torchnet.meter.mAPMeter
The mAPMeter measures the mean average precision over all classes.

The mAPMeter is designed to operate on NxK Tensors output and target, and optionally a Nx1 Tensor weight
where (1) the output contains model output scores for N examples and K classes that ought to be higher when
the model is more convinced that the example should be positively labeled, and smaller when the model believes
the example should be negatively labeled (for instance, the output of a sigmoid function); (2) the target contains
only values 0 (for negative examples) and 1 (for positive examples); and (3) the weight (> 0) represents weight
for each sample.

4.1.3 ClassErrorMeter

class torchnet.meter.ClassErrorMeter(topk=[1], accuracy=False)

4.1.4 ConfusionMeter

class torchnet.meter.ConfusionMeter(k, normalized=False)
Maintains a confusion matrix for a given calssification problem.

The ConfusionMeter constructs a confusion matrix for a multi-class classification problems. It does not support
multi-label, multi-class problems: for such problems, please use MultiLabelConfusionMeter.

Parameters

• k (int) – number of classes in the classification problem

• normalized (boolean) – Determines whether or not the confusion matrix is normalized
or not

16 Chapter 4. torchnet.meter

https://docs.python.org/3/library/functions.html#int

TNT Documentation, Release

add(predicted, target)
Computes the confusion matrix of K x K size where K is no of classes

Parameters

• predicted (tensor) – Can be an N x K tensor of predicted scores obtained from the
model for N examples and K classes or an N-tensor of integer values between 0 and K-1.

• target (tensor) – Can be a N-tensor of integer values assumed to be integer values
between 0 and K-1 or N x K tensor, where targets are assumed to be provided as one-hot
vectors

value()

Returns Confustion matrix of K rows and K columns, where rows corresponds to ground-truth
targets and columns corresponds to predicted targets.

4.2 Regression/Loss Meters

4.2.1 AverageValueMeter

class torchnet.meter.AverageValueMeter

4.2.2 AUCMeter

class torchnet.meter.AUCMeter
The AUCMeter measures the area under the receiver-operating characteristic (ROC) curve for binary classifi-
cation problems. The area under the curve (AUC) can be interpreted as the probability that, given a randomly
selected positive example and a randomly selected negative example, the positive example is assigned a higher
score by the classification model than the negative example.

The AUCMeter is designed to operate on one-dimensional Tensors output and target, where (1) the output
contains model output scores that ought to be higher when the model is more convinced that the example
should be positively labeled, and smaller when the model believes the example should be negatively labeled (for
instance, the output of a signoid function); and (2) the target contains only values 0 (for negative examples) and
1 (for positive examples).

4.2.3 MovingAverageValueMeter

class torchnet.meter.MovingAverageValueMeter(windowsize)

4.2.4 MSEMeter

class torchnet.meter.MSEMeter(root=False)

4.3 Miscellaneous Meters

4.3.1 TimeMeter

class torchnet.meter.TimeMeter(unit)
 #### tnt.TimeMeter(@ARGP) @ARGT

4.2. Regression/Loss Meters 17

TNT Documentation, Release

The tnt.TimeMeter is designed to measure the time between events and can be used to measure, for instance,
the average processing time per batch of data. It is different from most other meters in terms of the methods it
provides:

The tnt.TimeMeter provides the following methods:

• reset() resets the timer, setting the timer and unit counter to zero.

• value() returns the time passed since the last reset(); divided by the counter value when unit=true.

18 Chapter 4. torchnet.meter

CHAPTER 5

torchnet.utils

5.1 MultiTaskDataLoader

class torchnet.utils.MultiTaskDataLoader(datasets, batch_size=1, use_all=False, **load-
ing_kwargs)

Bases: object

Loads batches simultaneously from multiple datasets.

The MultiTaskDataLoader is designed to make multi-task learning simpler. It is ideal for jointly training a model
for multiple tasks or multiple datasets. MultiTaskDataLoader is initialzes with an iterable of Dataset objects,
and provides an iterator which will return one batch that contains an equal number of samples from each of the
Dataset s.

Specifically, it returns batches of [(B_0, 0), (B_1, 1), ..., (B_k, k)] from datasets (D_0, .
.., D_k), where each B_i has batch_size samples

Parameters

• datasets – A list of Dataset objects to serve batches from

• batch_size – Each batch from each Dataset will have this many samples

• use_all (bool) – If True, then the iterator will return batches until all datasets are ex-
hausted. If False, then iteration stops as soon as one dataset runs out

• loading_kwargs – These are passed to the children dataloaders

Example

>>> train_loader = MultiTaskDataLoader([dataset1, dataset2], batch_size=3)
>>> for ((datas1, labels1), task1), (datas2, labels2), task2) in train_loader:
>>> print(task1, task2)
0 1
0 1

19

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

TNT Documentation, Release

...
0 1

5.2 ResultsWriter

class torchnet.utils.ResultsWriter(filepath, overwrite=False)
Bases: object

Logs results to a file.

The ResultsWriter provides a convenient interface for periodically writing results to a file. It is designed to
capture all information for a given experiment, which may have a sequence of distinct tasks. Therefore, it writes
results in the format:

{
'tasks': [...]
'results': [...]

}

The ResultsWriter class chooses to use a top-level list instead of a dictionary to preserve temporal order of tasks
(by default).

Parameters

• filepath (str) – Path to write results to

• overwrite (bool) – whether to clobber a file if it exists

Example

>>> result_writer = ResultWriter(path)
>>> for task in ['CIFAR-10', 'SVHN']:
>>> train_results = train_model()
>>> test_results = test_model()
>>> result_writer.update(task, {'Train': train_results, 'Test': test_results})

update(task_name, result)
Update the results file with new information.

Parameters

• task_name (str) – Name of the currently running task. A previously unseen
task_name will create a new entry in both tasks and results.

• result – This will be appended to the list in results which corresponds to the
task_name in task_nametasks.

5.3 Table module

torchnet.utils.table.canmergetensor(tbl)

torchnet.utils.table.mergetensor(tbl)

20 Chapter 5. torchnet.utils

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

TNT Documentation, Release

TNT was inspired by TorchNet, and legend says that it stood for “TorchNetTwo”. Since then, TNT has developed on
its own.

TNT provides simple methods to record model preformance in the torchnet.meter module and to log them to Visdom
(or in the future, TensorboardX) with the torchnet.logging module.

In the future, TNT will also provide strong support for multi-task learning and transfer learning applications. It
currently supports joint training data loading through torchnet.utils.MultiTaskDataLoader.

5.3. Table module 21

source/torchnet.meter
source/torchnet.logging
source/torchnet.utils.html#multitaskdataloader

TNT Documentation, Release

22 Chapter 5. torchnet.utils

Python Module Index

t
torchnet.dataset, 3
torchnet.engine, 9
torchnet.logger, 11
torchnet.logger.visdomlogger, 12
torchnet.meter, 15
torchnet.utils.table, 20

23

TNT Documentation, Release

24 Python Module Index

Index

A
add() (torchnet.meter.APMeter method), 15
add() (torchnet.meter.ConfusionMeter method), 16
add() (torchnet.meter.meter.Meter method), 15
APMeter (class in torchnet.meter), 15
AUCMeter (class in torchnet.meter), 17
AverageValueMeter (class in torchnet.meter), 17

B
BaseVisdomLogger (class in torch-

net.logger.visdomlogger), 12
batch() (torchnet.dataset.dataset.Dataset method), 3
BatchDataset (class in torchnet.dataset), 3

C
canmergetensor() (in module torchnet.utils.table), 20
ClassErrorMeter (class in torchnet.meter), 16
ConcatDataset (class in torchnet.dataset), 4
ConfusionMeter (class in torchnet.meter), 16

D
Dataset (class in torchnet.dataset.dataset), 3

E
Engine (class in torchnet.engine), 9

H
hook() (torchnet.engine.Engine method), 9

L
ListDataset (class in torchnet.dataset), 4
log() (torchnet.logger.visdomlogger.BaseVisdomLogger

method), 12
log() (torchnet.logger.visdomlogger.VisdomLogger

method), 12
log() (torchnet.logger.visdomlogger.VisdomPlotLogger

method), 12
log() (torchnet.logger.visdomlogger.VisdomTextLogger

method), 13

log_state() (torchnet.logger.visdomlogger.BaseVisdomLogger
method), 12

M
mAPMeter (class in torchnet.meter), 16
mergetensor() (in module torchnet.utils.table), 20
Meter (class in torchnet.meter.meter), 15
MeterLogger (class in torchnet.logger), 11
MovingAverageValueMeter (class in torchnet.meter), 17
MSEMeter (class in torchnet.meter), 17
MultiTaskDataLoader (class in torchnet.utils), 19

P
parallel() (torchnet.dataset.dataset.Dataset method), 3
peek_meter() (torchnet.logger.MeterLogger method), 11
print_meter() (torchnet.logger.MeterLogger method), 11

R
resample() (torchnet.dataset.ShuffleDataset method), 6
ResampleDataset (class in torchnet.dataset), 5
reset() (torchnet.meter.APMeter method), 16
reset() (torchnet.meter.meter.Meter method), 15
reset_meter() (torchnet.logger.MeterLogger method), 11
ResultsWriter (class in torchnet.utils), 20

S
save() (torchnet.logger.visdomlogger.VisdomSaver

method), 12
select() (torchnet.dataset.SplitDataset method), 6
shuffle() (torchnet.dataset.dataset.Dataset method), 3
ShuffleDataset (class in torchnet.dataset), 5
split() (torchnet.dataset.dataset.Dataset method), 3
SplitDataset (class in torchnet.dataset), 6

T
TensorDataset (class in torchnet.dataset), 6
test() (torchnet.engine.Engine method), 10
TimeMeter (class in torchnet.meter), 17
torchnet.dataset (module), 3

25

TNT Documentation, Release

torchnet.engine (module), 9
torchnet.logger (module), 11
torchnet.logger.visdomlogger (module), 12
torchnet.meter (module), 15
torchnet.utils.table (module), 20
train() (torchnet.engine.Engine method), 10
transform() (torchnet.dataset.dataset.Dataset method), 3
TransformDataset (class in torchnet.dataset), 7

U
update() (torchnet.utils.ResultsWriter method), 20
update_loss() (torchnet.logger.MeterLogger method), 11
update_meter() (torchnet.logger.MeterLogger method),

11

V
valid_update_types (torch-

net.logger.visdomlogger.VisdomTextLogger
attribute), 13

value() (torchnet.meter.APMeter method), 16
value() (torchnet.meter.ConfusionMeter method), 17
value() (torchnet.meter.meter.Meter method), 15
VisdomLogger (class in torchnet.logger.visdomlogger),

12
VisdomPlotLogger (class in torch-

net.logger.visdomlogger), 12
VisdomSaver (class in torchnet.logger.visdomlogger), 12
VisdomTextLogger (class in torch-

net.logger.visdomlogger), 12
viz (torchnet.logger.visdomlogger.BaseVisdomLogger at-

tribute), 12

26 Index

	torchnet.dataset
	torchnet.engine
	torchnet.logger
	torchnet.meter
	torchnet.utils
	Python Module Index

